Yu Miyazaki, Ryo Nakayama, Nobuaki Yasuo, Yuki Watanabe, Ryota Shimizu, Daniel M. Packwood, Kazunori Nishio, Yasunobu Ando, Masakazu Sekijima, Taro Hitosugi. Bayesian statistics-based analysis of AC impedance spectra. AIP Adv. 10, 2020, 045231

Daniel M. Packwood and Pichaya Pattanasattayavong. Disorder-robust bands from anisotropic orbitals in a coordination polymer semiconductor. J. Phys. Condens. Matter. 32, 2020, 275701.

Daniel M. Packwood. Exploring the configuration spaces of surface materials using time-dependent diffraction patterns and unsupervised learning. Sci. Rep. 10, 2020, 5868.

Daniel M. Packwood. Nanomaterial design platform based on computation and machine learning. Kagakukougyou 71, 2020, 46

Daniel M. Packwood. Kernelized machine learning for a molecular self-assembly model. Bull. Jpn. Soc. Coord. Chem. 74, 2019, 62

Pichaya Pattanasattayavong, Daniel M. Packwood, and David J. Harding. Structural versatility and electronic structures of copper(I) thiocyanate (CuSCN)-ligand complexes. J. Mater. Chem. C. 7, 2019, 12907

Chayanit Wechwithayakhlung, Daniel M. Packwood, Jidapa Chaopaknam, Pimpisut Worakajit, Somlak Ittisanronnachai, Narong Chanlek, Vinich Promarak, Kanokwan Kongpatpanich, David J. Harding, and Pichaya Pattanasattayavong. Tin(II) Thiocyanate Sn(NSC)2 - a Wide Band Gap Coordination Polymer Semiconductor with 2D Structure. J. Mater. Chem. C. 72019, 3452.

Daniel M. Packwood. Structure prediction for bottom-up graphene nanoribbon assembly. Chem. NZ. 84, 2018, 182 (link)

Daniel M. Packwood and Taro Hitosugi. Material informatics for self-assembly of functionalized organic precursors on metal surfaces. Nat. Commun. 9, 2018, 2469.

Xinqian Li and Daniel M. Packwood. Substrate-molecule decoupling induced by molecular self-assembly - implications for graphene nanoribbon fabrication. AIP Adv. 8, 2018, 045117.

Gen Zhang, Masahiko Tsujimoto, Daniel M. Packwood, Nghia Tuan Duong, Yusuke Nishiyama, Kentaro Kadota, Susumu Kitagawa, and Satoshi Horike. Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach. J. Am. Chem. Soc. 140, 2018, 2602.

Daniel M. Packwood. Bayesian Optimization for Materials Science. SpringerBriefs in the Mathematics of Materials (volume 3). Springer, Singapore, 2017.

Daniel M. Packwood and Taro Hitosugi. Rapid prediction of molecule arrangements on metal surfaces via Bayesian optimization. Appl. Phys. Express. 10, 2017, 065502

Daniel M. Packwood, Patrick Han, and Taro Hitosugi. Chemical and Entropic Control of the Molecular Self-Assembly Process. Nat .Commum. 8, 2017, 14463

Tomohiro Higashino, Yuma Kurumisawa, Ning Cai, Yamato Fujimori, Yukihiro Tsuji, Shimpei Nimura, Daniel M. Packwood, Jaehong Park, and Hiroshi Imahori. A hydroxamic acid anchoring group for durable dye-sensitized solar cells incorporating a cobalt redox shuttle. ChemSusChem 10, 2017, 3347

Daniel M. Packwood, Patrick Han, and Taro Hitosugi. State Space Reduction and Equivalence Class Sampling of a Molecular Self-Assembly Model. Roy. Soc. Open. Sci. 3, 2016, 150681

Daniel M. Packwood, Helmut G. Katzgraber, and Winfried Teizer. Stochastic Boltzmann Equation for Magnetic Relaxation in High-Spin Molecules. Proc. Roy. Soc. A. 472, 2016, 20150699

Daniel M. Packwood, Kazuto Akagi, and Mitsuo Umetsu. Identification of Peptide Adsorbates for Strong Nanoparticle-Nanoparticle Binding by Lattice Protein Simulations. Materials Discovery. 1, 2015, 2

Daniel M. Packwood, Kazuaki Oniwa, Tienan Jin, and Naoki Asao. Charge Transport in Organic Crystals: Crucial Role of Correlated Fluctuations Unveiled by Analysis of Feynman Diagrams. J. Chem. Phys. 142, 2015, 144503

Daniel M. Packwood, Tienan Jin, Takeshi Fujita, Mingwei Chen, and Naoki Asao. Mixing time of Molecules Inside of Nanoporous Gold. SIAM J. Appl. Math. 74, 2014, 1298

Taro Hitosugi, Daniel M. Packwood, Susumu Shiraki. Atomic collision effects during PLD processes: nonstoichiometry control in transparent superconductors. Proc. SPIE 8987, Oxide-based Materials and Devices V, 89870U (March 8 2014)

Daniel M. Packwood, Kelley T. Reaves, Filippo L. Federici, Helmut G. Katzgraber, Winfried Teizer. 2D molecular magnets with weak topological invariant magnet moments: Mathematical prediction of targets for chemical synthesis. Proc. Roy. Soc. A. 469, 2013, 20130373.

Daniel M. Packwood, Susumu Shiraki, and Taro Hitosugi. Effects of collisions on the stoichiometry of thin films prepared by pulsed laser deposition. Phys. Rev. Lett. 111, 2013, 036101.

Dimitri V. Louzguine-Luzgin, Daniel M. Packwood, G. Xie, A. Yu. Churyumov. On deformation behavior of a Ni-based bulk metallic glass produced by flux treatment. J. Alloys Compd. 561, 2013, 241

Daniel M. Packwood. Phase relaxation in slowly changing environments: Evaluation of the Kubo-Anderson model for a continuous-time random walk. AIP Conf. Proc. 1518, 2013, 474.

Daniel M. Packwood and Yoshitaka Tanimura. Dephasing by a continuous-time random walk process. Phys. Rev. E. 86, 2012, 11130.

Daniel M. Packwood and Yoshitaka Tanimura. Non-Gaussian stochastic dynamics of spins and oscillators: A continuous-time random walk approach. Phys. Rev. E. 84, 2011, 61111.

Daniel M. Packwood and Leon F. Phillips. A stochastic, local mode study of neon-liquid surface collision dynamics. Phys. Chem. Chem. Phys. 13, 2011, 762.

Daniel I. Leonard, Daniel M. Packwood, and Leon F. Phillips. Non-equilibrium thermodynamics of the gas-liquid interface: Measurement of the Onsager heat of transport for carbon dioxide at the surface of water. J. Non-Equilm. Therm. 36, 2011, 273.

Daniel M. Packwood, Paula A. Brooksby, Alison J. Downard. pH-dependent wettability of carboxyphenyl films grafted to glassy carbon. Aust. J. Chem. 64, 2011, 122.

Daniel M. Packwood. The Ornstein-Uhlenbeck equation as a limiting case of a successive interactions model. J. Phys. A. Math. Theor. 43, 2010, 464001.

Daniel M. Packwood and Leon F. Phillips. A statistical approach to energy loss during gas-liquid collisions II. Neon-liquid metal collisions. Chem. Phys. Lett. 500, 2010, 120.

Daniel M. Packwood and Leon F. Phillips. A statistical approach to energy loss during gas-liquid collisions. Chem. Phys. Lett. 491, 2010, 91.

Daniel M. Packwood and Leon F. Phillips. Onsager heat of transport of carbon dioxide at the surface of aqueous ammonia. The remarkable effect of carbamate formation. Chem. Phys. Lett. 500, 2010, 120.

Daniel M. Packwood and Leon F. Phillips. Non-equilibrium thermodynamics at the gas-liquid interface. Measurement of the Onsager heat of transport for nitrous oxide at the surface of water. J. Non-Equilm. Therm. 35, 2010, 75.

Daniel M. Packwood and Leon F. Phillips. Irreversible thermodynamics of a gas-liquid interface. Advances in Geosciences 19, 2010, 499.

Paul Nissenson, Daniel M. Packwood, Sherri W. Hunt, Barbara J. Finlayson-Pitts, and Donald Dabdub. Probing the sensitivity of gaseous Br2 production from the oxidation of aqueous bromide-containing aerosols. Atoms. Environ. 43, 2009, 3951.

Daniel M. Packwood and Leon F. Phillips. A stochastic, local mode treatment of high-energy gas-liquid collisions. J. Phys. Chem. A.113, 2008, 7647.